The Stochastic Beverton-Holt Equation and the
نویسندگان
چکیده
In the Beverton Holt difference equation of population biology with intrinsic growth parameter above its critical value, any initial non-zero population will approach an asymptotically stable fixed point, the carrying capacity of the environment. When this carrying capacity is allowed to vary periodically it is known that there is a globally asymptotically stable periodic solution and the average of the state variable along this solution is strictly less than the average of the carrying capacities, i.e. the varying environment has a deleterious effect on the state average. In this work we consider the case of a randomly varying environment and show that there is a unique invariant density to which all other density distributions on the state variable converge. Further, for every initial non-zero state variable and almost all random sequences of carrying capacities, the averages of the state variable along an orbit and the carrying capacities exist and the former is strictly less than the latter.
منابع مشابه
On the Stochastic Beverton-Holt Equation with Survival Rates
The paper studies a Beverton-Holt difference equation, in which both the recruitment function and the survival rate vary randomly. It is then shown that there is a unique invariant density, which is asymptotically stable. Moreover, a basic theory for random mean almost periodic sequence on Z+ is given. Then, some sufficient conditions for the existence of a mean almost periodic solution to the ...
متن کاملThe Beverton–Holt q-difference equation
The Beverton-Holt model is a classical population model which has been considered in the literature for the discrete-time case. Its continuous-time analogue is the well-known logistic model. In this paper, we consider a quantum calculus analogue of the Beverton-Holt equation. We use a recently introduced concept of periodic functions in quantum calculus in order to study the existence of period...
متن کاملThe Sigmoid Beverton-Holt Model Revisited
We will be examining the Sigmoid Beverton-Holt difference equation. It has been shown that when the Sigmoid Beverton-Holt has a p-periodically-varying growth rate, there exists a p-periodic globally asymptotically stable solution {xn}. In this paper we extend this result to include a more general class of Sigmoid Beverton-Holt functions. Furthermore, we consider the case in which the variables ...
متن کاملAn Evolutionary Beverton-Holt Model
The classic Beverton-Holt (discrete logistic) difference equation, which arises in population dynamics, has a globally asymptotically stable equilibrium (for positive initial conditions) if its coefficients are constants. If the coefficients change in time, then the equation becomes nonautonomous and the asymptotic dynamicsmight not be as simple. One reason the coefficients can change in time i...
متن کاملModel-Matching-Based Control of the Beverton-Holt Equation in Ecology
This paper discusses the generation of a carrying capacity of the environment so that the famous Beverton-Holt equation of Ecology has a prescribed solution. The way used to achieve the tracking objective is the design of a carrying capacity through a feedback law so that the prescribed reference sequence, which defines the suitable behavior, is achieved. The advantage that the inverse of the B...
متن کامل